TEXT(Inclined Supersonic Flow In A Duct TITLE DISPLAY The problem considered is inclined supersonic flow in a plane duct. The flow enters at 6o to the horizontal at M=3, and Pin/Ptot=0.02722 with RHOin/RHOtot=0.07623. A compression wave is formed from the top corner of the duct inlet, and an expansion from bottom corner of the duct inlet. The calculations are made using the parabolic solver option with IPARAB=4. The flow is modelled as isentropic. The comparison between PHOENICS and the analytical results is as follows: Expansion wave Mach P/Po RHO/RHOo PHOENICS 3.3 0.0166 0.1047 Analytical 3.3 0.0167 0.1045 Compression wave Mach P/Po RHO/RHOo PHOENICS 2.7 0.0424 0.0537 Analytical 2.7 0.0425 0.0542 ENDDIS So as to allow a direct computation of dimensionless flow variables, the flow equations are normalised such that the flow variables can be interpreted as: P/Po; RHO/RHOo; T/To; U/Uref; H/Href; Here: Po, RHOo and To are the inlet total pressure, density and temperature; Uref=Ao/SQRT(GAMMA); and Href=(gam-1.)*Ho/gam, where Ho is the inlet total enthalpy and gam is the specific heat ratio. Ao is the acoustic velocity at To (see Palacio et al, Int.J.Heat Mass Transfer, Vol.33, No.6, p1193, [1990] ). PHOTON USE p parphi msg The grid used gr x 1 msg - msg Pressto continue pause gr off;red;gr ou x 1 msg pressure distribution con p1 x 1 fi;0.01 int 20 gr ou x 1 msg - msg Press to continue pause con off;r ed;vec x 1 sh msg velocity vectors msg - msg Press to continue pause;cl con on;con mach x 1 fi;.01 msg Mach number contours msg msg Press e to END enduse REAL(GASCON,GAMMA,PTOTAL,TTOTAL,RHOTOT,MACHI,AGAM1,RGAM) REAL(PIN,TIN,VIN,QTOT,POWER,WIN,RHOIN,PI,COSA,SINA) REAL(ANG1,ZLEN,WIDTH,AIN,FLOWIN) PI=3.1415927 GASCON=1.0;GAMMA=1.4 PTOTAL=1.0;TTOTAL=1.0;RHOTOT=1.0;MACHI=3.0 ** Inlet flow angle ANG1=6.0*PI/180. ZLEN=1.0;WIDTH=1.0 ** Calculation of inlet velocity AGAM1=GAMMA-1.;RGAM=1./GAMMA;POWER=GAMMA/AGAM1 PIN=PTOTAL/(1.+AGAM1*MACHI*MACHI/2.)**POWER RHOIN=RHOTOT/(PTOTAL/PIN)**RGAM WIN=MACHI*(GAMMA*PIN/RHOIN)**0.5 QTOT=WIN ** Calculation of Inlet Temperature TIN=PIN/(GASCON*RHOIN) COSA=COS(ANG1);SINA=SIN(ANG1) WIN=QTOT*COSA;VIN=QTOT*SINA GROUP 1. Run title and other preliminaries GROUP 2. Transience; time-step specification PARAB=T;IPARAB=4 GROUP 3. X-direction grid specification GROUP 4. Y-direction grid specification GRDPWR(Y,40,WIDTH,1.0) GROUP 5. Z-direction grid specification GRDPWR(Z,40,ZLEN,1.0) GROUP 6. Body-fitted coordinates or grid distortion GROUP 7. Variables stored, solved & named SOLVE(P1,W1,V1) ** Provide storage for the density. STORE(RHO1,MACH) GROUP 8. Terms (in differential equations) & devices TERMS(W1,Y,Y,N,Y,Y,Y);TERMS(V1,Y,Y,N,Y,Y,Y) GROUP 9. Properties of the medium (or media) ** Use Isentropic Density Law RHO1=COMPRESS;RHO1A=RHOTOT/PTOTAL**RGAM;RHO1B=RGAM RHO1C=0.;PRESS0=0.;DRH1DP=COMPRESS GROUP 10. Inter-phase-transfer processes and properties GROUP 11. Initialization of variable or porosity fields FIINIT(P1)=PIN;FIINIT(W1)=WIN;FIINIT(RHO1)=RHOIN FIINIT(V1)=VIN GROUP 13. Boundary conditions and special sources INLET(IN,LOW,1,NX,1,NY,1,1,1,1) VALUE(IN,P1,RHOIN*WIN);VALUE(IN,W1,WIN);VALUE(IN,V1,VIN) GROUP 16. Termination of iterations SELREF=F AIN=YVLAST;FLOWIN=WIN*RHOIN*AIN RESREF(P1)=1.E-12*FLOWIN;RESREF(V1)=RESREF(P1)*WIN RESREF(W1)=RESREF(V1);LITER(P1)=20 GROUP 17. Under-relaxation devices DENPCO=T REAL(DTF);DTF=ZWLAST/WIN RELAX(P1,LINRLX,1.0) RELAX(V1,FALSDT,DTF);RELAX(W1,FALSDT,DTF) GROUP 18. Limits on variables or increments to them GROUP 19. Data communicated by satellite to GROUND GROUP 20. Preliminary print-out GROUP 21. Print-out of variables GROUP 22. Spot-value print-out IYMON=1 GROUP 23. Field print-out and plot control ITABL=3;NPLT=2;NYPRIN=1;NZPRIN=NZ/4;TSTSWP=-1 IF(NZ.GT.1) THEN + IDISPA=1;IDISPB=1;IDISPC=NZ ENDIF LITHYD=10