TEXT(Inclined Supersonic Flow In A Duct
TITLE
DISPLAY
The problem considered is inclined supersonic flow in a plane
duct. The flow enters at 6o to the horizontal at M=3, and
Pin/Ptot=0.02722 with RHOin/RHOtot=0.07623. A compression wave is
formed from the top corner of the duct inlet, and an expansion
from bottom corner of the duct inlet. The calculations are made
using the parabolic solver option with IPARAB=4. The flow is
modelled as isentropic. The comparison between PHOENICS and the
analytical results is as follows:
Expansion wave
Mach P/Po RHO/RHOo
PHOENICS 3.3 0.0166 0.1047
Analytical 3.3 0.0167 0.1045
Compression wave
Mach P/Po RHO/RHOo
PHOENICS 2.7 0.0424 0.0537
Analytical 2.7 0.0425 0.0542
ENDDIS
So as to allow a direct computation of dimensionless flow
variables, the flow equations are normalised such that the flow
variables can be interpreted as: P/Po; RHO/RHOo; T/To; U/Uref;
H/Href;
Here: Po, RHOo and To are the inlet total pressure, density
and temperature; Uref=Ao/SQRT(GAMMA); and Href=(gam-1.)*Ho/gam,
where Ho is the inlet total enthalpy and gam is the specific
heat ratio. Ao is the acoustic velocity at To (see Palacio et al,
Int.J.Heat Mass Transfer, Vol.33, No.6, p1193, [1990] ).
PHOTON USE
p
parphi
msg The grid used
gr x 1
msg -
msg Press to continue
pause
gr off;red;gr ou x 1
msg pressure distribution
con p1 x 1 fi;0.01
int 20
gr ou x 1
msg -
msg Press to continue
pause
con off;r
ed;vec x 1 sh
msg velocity vectors
msg -
msg Press to continue
pause;cl
con on;con mach x 1 fi;.01
msg Mach number contours
msg
msg Press e to END
enduse
REAL(GASCON,GAMMA,PTOTAL,TTOTAL,RHOTOT,MACHI,AGAM1,RGAM)
REAL(PIN,TIN,VIN,QTOT,POWER,WIN,RHOIN,PI,COSA,SINA)
REAL(ANG1,ZLEN,WIDTH,AIN,FLOWIN)
PI=3.1415927
GASCON=1.0;GAMMA=1.4
PTOTAL=1.0;TTOTAL=1.0;RHOTOT=1.0;MACHI=3.0
** Inlet flow angle
ANG1=6.0*PI/180.
ZLEN=1.0;WIDTH=1.0
** Calculation of inlet velocity
AGAM1=GAMMA-1.;RGAM=1./GAMMA;POWER=GAMMA/AGAM1
PIN=PTOTAL/(1.+AGAM1*MACHI*MACHI/2.)**POWER
RHOIN=RHOTOT/(PTOTAL/PIN)**RGAM
WIN=MACHI*(GAMMA*PIN/RHOIN)**0.5
QTOT=WIN
** Calculation of Inlet Temperature
TIN=PIN/(GASCON*RHOIN)
COSA=COS(ANG1);SINA=SIN(ANG1)
WIN=QTOT*COSA;VIN=QTOT*SINA
GROUP 1. Run title and other preliminaries
GROUP 2. Transience; time-step specification
PARAB=T;IPARAB=4
GROUP 3. X-direction grid specification
GROUP 4. Y-direction grid specification
GRDPWR(Y,40,WIDTH,1.0)
GROUP 5. Z-direction grid specification
GRDPWR(Z,40,ZLEN,1.0)
GROUP 6. Body-fitted coordinates or grid distortion
GROUP 7. Variables stored, solved & named
SOLVE(P1,W1,V1)
** Provide storage for the density.
STORE(RHO1,MACH)
GROUP 8. Terms (in differential equations) & devices
TERMS(W1,Y,Y,N,Y,Y,Y);TERMS(V1,Y,Y,N,Y,Y,Y)
GROUP 9. Properties of the medium (or media)
** Use Isentropic Density Law
RHO1=COMPRESS;RHO1A=RHOTOT/PTOTAL**RGAM;RHO1B=RGAM
RHO1C=0.;PRESS0=0.;DRH1DP=COMPRESS
GROUP 10. Inter-phase-transfer processes and properties
GROUP 11. Initialization of variable or porosity fields
FIINIT(P1)=PIN;FIINIT(W1)=WIN;FIINIT(RHO1)=RHOIN
FIINIT(V1)=VIN
GROUP 13. Boundary conditions and special sources
INLET(IN,LOW,1,NX,1,NY,1,1,1,1)
VALUE(IN,P1,RHOIN*WIN);VALUE(IN,W1,WIN);VALUE(IN,V1,VIN)
GROUP 16. Termination of iterations
SELREF=F
AIN=YVLAST;FLOWIN=WIN*RHOIN*AIN
RESREF(P1)=1.E-12*FLOWIN;RESREF(V1)=RESREF(P1)*WIN
RESREF(W1)=RESREF(V1);LITER(P1)=20
GROUP 17. Under-relaxation devices
DENPCO=T
REAL(DTF);DTF=ZWLAST/WIN
RELAX(P1,LINRLX,1.0)
RELAX(V1,FALSDT,DTF);RELAX(W1,FALSDT,DTF)
GROUP 18. Limits on variables or increments to them
GROUP 19. Data communicated by satellite to GROUND
GROUP 20. Preliminary print-out
GROUP 21. Print-out of variables
GROUP 22. Spot-value print-out
IYMON=1
GROUP 23. Field print-out and plot control
ITABL=3;NPLT=2;NYPRIN=1;NZPRIN=NZ/4;TSTSWP=-1
IF(NZ.GT.1) THEN
+ IDISPA=1;IDISPB=1;IDISPC=NZ
ENDIF
LITHYD=10