PHOTON USE p parphi msg LAMINAR 2D BOUNDARY LAYER ON WALL msg set ref vec 3 msg Velocity vectors: vec x 1 sh msg msg Pressto continue pause vec off;red msg Axial velocity contours: con wcrt x 1 fi;.01 msg msg Press to continue pause con off;red msg Distribution of the velocity component msg normal to the wall: con vcrt x 1 fi;.01 msg - msg Press to continue pause con off;red msg Temperature distribution: con h1 x 1 fi;.01 msg msg Press to continue pause con off;red msg Pressure contours: con p1 x 1 fi;.01 msg msg Press e to END enduse GROUP 1. Run title and other preliminaries TEXT(2D Laminar B-Layer On A Hot Wall TITLE mesg(PC486/50 time last reported as 1.min DISPLAY This run shows what happens in a boundary-layer flow adjacent to a heated wall. An expanding grid is used in the direction normal to the wall so as to match the growth of the boundary layer. Fixed, zero pressure boundary. W=1.0m/s Prescribed - - - - - - - - - - - - - - - - - - - - - - - - - mass inflow rate, -----> -----> -----> velocity -----> ----> ----> and -----> ---> --> enthalpy _________________________________________________ ^ ///////////////////////////////////////////////// y| Wall |---> z ENDDIS Users may like to try changing : the grid-expansion rate; the velocity of the fluid at the leading edge and the boundary values on the plate. GROUP 4. Y-direction grid specification GRDPWR(Y,20,5.0E-4,1.0) ** Grid width grows as (axial distance)**0.5 AZYV=0.5;ZWADD=5.0E-04 GROUP 5. Z-direction grid specification PARAB=T ** Z-direction distances vary as IZ**2.0 GRDPWR(Z,20,0.1,2.0) GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1,H1) GROUP 8. Terms (in differential equations) & devices TERMS(H1,N,Y,Y,Y,Y,Y) GROUP 9. Properties of the medium (or media) ENUL=1.E-5;PRNDTL(H1)=0.7 GROUP 13. Boundary conditions and special sources ** South wall WALL (plte,SOUTH,1,1,1,1,1,NZ,1,1) COVAL(plte,H1,1.0,0.0);COVAL(plte,W1,1.0,0.0) ** Open North boundary PATCH(HIGHY,CELL,1,1,NY,NY,1,NZ,1,1) COVAL(HIGHY,P1,FIXP,0.0);COVAL(HIGHY,H1,ONLYMS,1.0) COVAL(HIGHY,W1,ONLYMS,1.0);COVAL(HIGHY,V1,ONLYMS,0.0) ** Upstream boundary INLET(UPSTREAM,LOW,1,1,1,NY,1,1,1,1) VALUE(UPSTREAM,P1,1.0);VALUE(UPSTREAM,W1,1.0) VALUE(UPSTREAM,H1,1.0) GROUP 14. Downstream pressure for PARAB=T IPARAB=1 GROUP 16. Termination of iterations LITHYD=10 GROUP 22. Spot-value print-out IYMON=5 GROUP 23. Field print-out and plot control NZPRIN=NZ/2;NPLT=1;TSTSWP=LITHYD/2 ** Cross-stream profiles PATCH(FIXEDZ,PROFIL,1,1,1,NY,1,NZ,1,1) PLOT(FIXEDZ,W1,0.0,0.0);PLOT(FIXEDZ,H1,0.0,0.0) ***actdem*** mesg(Press to continue readvdu(ans,char,n) do ii=1,5 + mesg( enddo mesg( Initial data that can be changed: mesga( Grid expansion rate = 0.5 mesg( Wall enthalpy = 0. mesg( Fluid velocity at the leading edge = 1.m/s mesga( Do you want to change settings (y/n)? (Default n) readvdu(ans,char,n) if(:ans:.eq.y) then + real(rt1) + do ii=1,5 + mesg( + enddo + mesga( Grid expansion rate is 0.5. OK? If not, insert new value. + readvdu(rt1,real,0.5) + AZYV=rt1; ZWADD=5.0E-04 + do ii=1,5 + mesg( + enddo + mesga( Wall enthalpy is set to 0. OK? If not, insert new value. + readvdu(rt1,real,0.) + COVAL(plte,H1,1.0,rt1);COVAL(plte,W1,1.0,0.0) + do ii=1,5 + mesg( + enddo + mesg( Fluid velocity at the leading edge is 1.m/s. OK? + mesga( If not, insert new value. + readvdu(rt1,real,1.) + VALUE(UPSTREAM,P1,rt1);VALUE(UPSTREAM,W1,rt1) endif IDISPA=1; TSTSWP=-1 selref=t; resfac=1.e-2