TALK=T;RUN( 1, 1)
DISPLAY This case concerns steady laminar flow near a rotating disk in an infinite atmosphere. The Reynolds number is sufficiently high for a self-similar boundary layer to develop, as is shown by the facts that: * the axial velocity w1, * the dimensionless radial velocity v1/radius, and * the dimensionless circumferential velocity u1/radius * are all functions of axial distance alone. Because the axial-direction grid spacing and the false-time-step relaxation depend on the rotation speed omega, omega may be varied over a wide range without other settings having to be changed. ENDDIS PHOTON USE p 1 5000 con v1 x 1 fi;0.001 pause con dimv x 1 y 1 99 z 1 20 fi;0.001 pause con dimu x 1 fi;0.001 pause con dimw x 1 y 1 100 z 1 19 fi;0.001 ENDUSE TEXT(Steady laminar rotating-disc flow) REAL(OMEGA,RADIUS,REYNO,ROOT) OMEGA=200000 RADIUS=0.5 REYNO=OMEGA*RADIUS**2/ENUL ROOT=REYNO**0.5 NX=1;XULAST=0.01 ! grid and geometry settings NY=100;NZ=20 YVLAST=RADIUS ZWLAST=10.0*YVLAST/ROOT GRDPWR(Y,NY,-YVLAST,1.01) GRDPWR(Z,NZ,-ZWLAST,1.1) CARTES=F SOLVE(P1,U1,V1,W1,TEM1) ! the variables solved, and how SOLUTN(P1,Y,Y,Y,P,P,P) SOLUTN(V1,Y,Y,Y,P,P,P) SOLUTN(W1,Y,Y,Y,P,P,P) PATCH(HIGH,CELL,1,1,1,NY,NZ,NZ,1,1) ! boundary conditions COVAL(HIGH,P1,FIXVAL,0.0) COVAL(HIGH,TEM1,ONLYMS,0.0) IURVAL=-1 ! signal to ensure u1 setting PATCH(DISC,LWALL,1,1,1,NY,1,1,1,1) ! is interpreted COVAL(DISC, U1, 1.0, OMEGA) ! as omega * radius COVAL(DISC, V1, 1.0, 0.0) COVAL(DISC, TEM1, 1.0, 1.0) PATCH(OUTLET,CELL,1,1,NY,NY,1,NZ,1,1) COVAL(OUTLET,P1,FIXVAL,0.0) RELAX(W1,FALSDT,1.0E-1/OMEGA) ! omega-dependent under-relaxation RELAX(V1,FALSDT,1.0E-2/OMEGA) IYMON=NY/2; IZMON=NZ/2 LSWEEP=1000 TSTSWP=-1 (STORED VAR DIMW IS W1/(:OMEGA:*:RADIUS:/:ROOT:) ) !** InForm (STORED VAR DIMV IS V1/(:OMEGA:*RV)) !** ensures computation of (STORED VAR DIMU IS U1/(:OMEGA:*RG)) !** dimensionless quantities