TALK=T;RUN(1,1)
PHOTON USE p;parphi msg Temperature contours con h1 z 1 fi;0.001 con h1 z 19 fi;0.001 con h1 z 39 fi;0.001 con h1 z 59 fi;0.001 con h1 z 79 fi;0.001 con h1 z 99 fi;0.001 pause;con off;red msg the grid gr y m gr z m pause;gr off;red view z;con h1 z m fi;0.0001 msg Temperature contours at outlet plane pause;con off;red msg velocity vectors at outlet plane set ref vec 0.3 vec z m sh;pause;con off;vec off;red msg pressure contours at outlet plane con p1 z m sh;int 50 ENDUSE ****** TO LOAD CASE: TYPE L(125) ****** GROUP 1. Run title and other preliminaries TEXT(Free Convection In Horizontal Pipe TITLE DISPLAY Air flows at low Reynolds Number along a horizontal pipe of circular cross-section, the wall of which is at a higher temperature than the entering air. Natural convection (ie buoyancy) creates a circulation in the cross-sectional plane, superimposed on the Poiseille-like longitudinal motion. The parabolic mode permits use of a fine grid in the longitud- inal direction. 40 000 cells are used,in effect, although the storage used is that apporpriate to 400. ^ .-.-----------------------------. | |r / \ \ g| | -|--> | Pipe wall is at |-> v -|--> | constant temp., TWAL |-> Fixed \ / / mass flux `-'-----------------------------' with temp. TIN z----> ENDDIS The locally-defined variables are as follows: RADIUS radius of pipe m PIPL length of pipe m TIN inlet temperature C TWAL wall temperature C WIN inlet mean velocity m/s REAL(RADIUS,PIPL,WIN,TIN,TWAL) RADIUS=0.01; PIPL=.1; TIN=20.0; TWAL=40.0; WIN=0.2 GROUP 3. X-direction grid specification *** Cylindrical-polar coordinate system is used CARTES=F; IREGX=1; GRDPWR(X,20,3.14159,1.0) GROUP 4. Y-direction grid specification IREGY=1; GRDPWR(Y,20,RADIUS,-1.5) GROUP 5. Z-direction grid specification *** The flow is parabolic PARAB=T; IREGZ=1; GRDPWR(Z,100,PIPL,1.0) GROUP 7. Variables stored, solved & named SOLVE(P1,U1,V1,W1,H1) GROUP 9. Properties of the medium (or media) PRNDTL(H1)=0.7 GROUP 13. Boundary conditions and special sources 1. Inlet boundary: uniform velocity and temperature INLET(UNIFORM,LOW,#1,#NREGX,#1,#NREGY,#1,#1,1,1) VALUE(UNIFORM,P1,WIN*RHO1); VALUE(UNIFORM,W1,WIN) VALUE(UNIFORM,H1,TIN) 2. Wall boundary: constant temperature WALL (PIPE,NORTH,#1,#NREGX,#NREGY,#NREGY,#1,#NREGZ,1,1) COVAL(PIPE,W1,1.0,0.0);COVAL(PIPE,U1,1.0,0.0) COVAL(PIPE,H1,1.0,TWAL) 3. Buoyancy source *** Set buoyancy source = RHO * VOLUME * grav * DVO1DT * (Tref-T) where DVO1DT is coefficient of expansion based on mean temperature. (See GREX3, Group 13, sec.15, and GXBUOY) *** Following data need to be set for this purpose: BUOYE=Tref; BUOYA=grav. DVO1DT=1.005E+03/(273.0+(TIN+TWAL)*.5) BUOYE=TIN; BUOYA=0.0; BUOYB=-9.81 ! corresponds to u1 source = 0 ! at x=0 and pi, maximum at pi/2, ! v1 source = maximum ay x=0, ! =0 at x=p1/2 PATCH(BUOY,PHASEM,1,NX,1,NY,1,NZ,1,1) COVAL(BUOY,U1,FIXFLU,BOUSS); COVAL(BUOY,V1,FIXFLU,BOUSS) GROUP 15. Termination of sweeps LITHYD=20;LITER(U1)=10;LITER(W1)=10;SELREF=T;RESFAC=0.1 GROUP 23. Field print-out and plot control NXPRIN=2; NYPRIN=2; IZPRF=NZ; IZPRL=NZ;TSTSWP=-1 nzprin=10 PATCH(EXIT,CONTUR,1,NX,1,NY,NZ,NZ,1,1); COVAL(EXIT,H1,0.0,TWAL) IDISPA=1 ! to ensure creation of parphi file conwiz=t