TALK=T;RUN(1,1) 125.htm

  PHOTON USE
  p;parphi
 
 
 
  msg Temperature contours
  con h1 z 1 fi;0.001
  con h1 z 19 fi;0.001
  con h1 z 39 fi;0.001
  con h1 z 59 fi;0.001
  con h1 z 79 fi;0.001
  con h1 z 99 fi;0.001
  pause;con off;red
  msg the grid
  gr y m
  gr z m
  pause;gr off;red
  view z;con h1 z m fi;0.0001
  msg Temperature contours at outlet plane
  pause;con off;red
  msg velocity vectors at outlet plane
  set ref vec 0.3
  vec z m sh;pause;con off;vec off;red
  msg pressure contours at outlet plane
  con p1 z m sh;int 50
  ENDUSE
     ****** TO LOAD CASE: TYPE L(125) ******
    GROUP 1. Run title and other preliminaries
TEXT(Free Convection In Horizontal Pipe
TITLE
  DISPLAY
  Air flows at low Reynolds Number along a horizontal pipe of
  circular cross-section, the wall of which is at a higher
  temperature than the entering air.
 
  Natural convection (ie buoyancy) creates a circulation in the
  cross-sectional plane, superimposed on the Poiseille-like
  longitudinal motion.
 
  The parabolic mode permits use of a fine grid in the longitud-
  inal direction. 40 000 cells are used,in effect, although the 
  storage used is that apporpriate to 400.
 
             ^       .-.-----------------------------.
      |      |r    /     \                             \
     g|      |   -|-->    |   Pipe wall is at           |->
      v          -|-->    |   constant temp., TWAL      |->
           Fixed   \     /                             /
           mass flux `-'-----------------------------'
           with temp. TIN         z---->
  ENDDIS
 
   The locally-defined variables are as follows:
 
     RADIUS  radius of pipe                   m
     PIPL    length of pipe                   m
     TIN     inlet temperature                C
     TWAL    wall temperature                 C
     WIN     inlet mean velocity              m/s
 
REAL(RADIUS,PIPL,WIN,TIN,TWAL)
RADIUS=0.01; PIPL=.1; TIN=20.0; TWAL=40.0; WIN=0.2
 
    GROUP 3. X-direction grid specification
   *** Cylindrical-polar coordinate system is used
CARTES=F; IREGX=1; GRDPWR(X,20,3.14159,1.0)
 
    GROUP 4. Y-direction grid specification
IREGY=1; GRDPWR(Y,20,RADIUS,-1.5)
    GROUP 5. Z-direction grid specification
   *** The flow is parabolic
PARAB=T; IREGZ=1; GRDPWR(Z,100,PIPL,1.0)
    GROUP 7. Variables stored, solved & named
SOLVE(P1,U1,V1,W1,H1)
    GROUP 9. Properties of the medium (or media)
PRNDTL(H1)=0.7
    GROUP 13. Boundary conditions and special sources
   1. Inlet boundary: uniform velocity and temperature
INLET(UNIFORM,LOW,#1,#NREGX,#1,#NREGY,#1,#1,1,1)
VALUE(UNIFORM,P1,WIN*RHO1); VALUE(UNIFORM,W1,WIN)
VALUE(UNIFORM,H1,TIN)
   2. Wall boundary:   constant temperature
WALL (PIPE,NORTH,#1,#NREGX,#NREGY,#NREGY,#1,#NREGZ,1,1)
COVAL(PIPE,W1,1.0,0.0);COVAL(PIPE,U1,1.0,0.0)
COVAL(PIPE,H1,1.0,TWAL)
   3. Buoyancy source
   *** Set buoyancy source = RHO * VOLUME * grav * DVO1DT * (Tref-T)
       where DVO1DT is coefficient of expansion based on mean
       temperature. (See GREX3, Group 13, sec.15, and GXBUOY)
   *** Following data need to be set for this purpose:
       BUOYE=Tref; BUOYA=grav.
DVO1DT=1.005E+03/(273.0+(TIN+TWAL)*.5)
BUOYE=TIN; BUOYA=0.0; BUOYB=-9.81 ! corresponds to u1 source = 0
                                  ! at x=0 and pi, maximum at pi/2,
                                  ! v1 source = maximum ay x=0,
                                  ! =0 at x=p1/2
PATCH(BUOY,PHASEM,1,NX,1,NY,1,NZ,1,1)
COVAL(BUOY,U1,FIXFLU,BOUSS); COVAL(BUOY,V1,FIXFLU,BOUSS)
    GROUP 15. Termination of sweeps
LITHYD=20;LITER(U1)=10;LITER(W1)=10;SELREF=T;RESFAC=0.1
 
    GROUP 23. Field print-out and plot control
NXPRIN=2; NYPRIN=2; IZPRF=NZ; IZPRL=NZ;TSTSWP=-1
nzprin=10
PATCH(EXIT,CONTUR,1,NX,1,NY,NZ,NZ,1,1); COVAL(EXIT,H1,0.0,TWAL)
IDISPA=1 ! to ensure creation of parphi file
conwiz=t