photon use p parphi msg the grid. Press return to see the temperature field gr ou z 1 gr ou z m gr y m pause gr off red gr ou x 1 gr ou z 1 msg Temperature contours. Press return to see the pressure field do kk=1,20 con h1 z kk fi;0.01 enddo gr ou z m pause con off red msg pressure contours on an axial plane; Press return for vectors con p1 x 1 fi;0.01 gr ou z m pause msg velocity vectors on plane between fins. msg Press e to end. Other wise enter command con off red vec x m sh gr ou z m enduse GROUP 1. Run title and other preliminaries TEXT(Internally-Finned Pipe; Laminar TITLE DISPLAY The radial fins are continuous, thin, uniformly spaced. Fluid enters the pipe with uniform velocity and temperature; A constant temperature is prescribed for both fins and pipe wall. x---> Pipe wall (1/48 radian segment) ****** / Fin | *** Constant temperature ^ \ | ** | | \| / ^ .-.-----|-----.-- | | |r / \ \ r | / | -|--> | | -|--> | | Symmetry | /--Symmetry Fixed \ / / plane \ plane mass, `-'-----------'-- \ | / momentum and z----> \ enthalpy fluxes |/ Note that the above sketch suggests the the fin projects only part of the way towards the axis; but the patch representing the fin wall in fact extends to the axis. This is altogther a poor representation of a finned tube, no simulation is effected of the reduction in surface temperature with diminishing radius resulting from the finite conductivity of the fin material. This library case should be replaced by one which is more realistic. The Q1 file contains PHOTON USE commands. The locally-defined variables are as follows: NFIN number of fins DPIP pipe diameter TWAL wall temperature TIN inlet temperature WIN inlet velocity. ENDDIS REAL(WIN,DPIP,TWAL,TIN,REYNLDS);INTEGER(NFIN) NFIN=24; WIN=0.1; DPIP=0.08; TWAL=25.0; TIN=20.0 GROUP 2. Transience; time-step specification GROUP 3. X-direction grid specification CARTES=F; IREGX=1; GRDPWR(X,10,3.1416/NFIN,1.2) GROUP 4. Y-direction grid specification IREGY=1; GRDPWR(Y,10,0.5*DPIP,-2.0) GROUP 5. Z-direction grid specification PARAB=T; IREGZ=1; GRDPWR(Z,20,0.1,1.0) GROUP 6. Body-fitted coordinates or grid distortion GROUP 7. Variables stored, solved & named SOLVE(P1,W1,U1,V1,H1) GROUP 8. Terms (in differential equations) & devices TERMS(H1,N,P,P,P,P,P) GROUP 9. Properties of the medium (or media) PRNDTL(H1)=0.70;REYNLDS=WIN*YVLAST*2.0/ENUL REYNLDS GROUP 13. Boundary conditions and special sources ** Uniform velocity and temperature at the inlet INLET(IN,LOW,#1,#NREGX,#1,#NREGY,#1,#1,1,1) VALUE(IN,P1,1.0*WIN);VALUE(IN,W1,WIN);VALUE(IN,H1,TIN) ** Constant temperature at fin surface. WALL (FINWALL,WEST,#1,#1,#1,#NREGY,#1,#NREGZ,1,1) COVAL(FINWALL,W1,1.0,0.0);COVAL(FINWALL,V1,1.0,0.0) COVAL(FINWALL,H1,1.0,TWAL) ** Constant temperature at pipe wall. WALL (PIPEWALL,NORTH,#1,#NREGX,#NREGY,#NREGY,#1,#NREGZ,1,1) COVAL(PIPEWALL,W1,1.0,0.0);COVAL(PIPEWALL,U1,1.0,0.0) COVAL(PIPEWALL,H1,1.0,TWAL) GROUP 14. Downstream pressure for PARAB=.TRUE. GROUP 15. Termination of sweeps LITHYD=10;SELREF=T;RESFAC=0.01 GROUP 16. Termination of iterations LITER(U1)=10;LITER(V1)=10;LITER(W1)=10 GROUP 17. Under-relaxation devices RELAX(U1,FALSDT,1.0);RELAX(V1,FALSDT,1.0);RELAX(W1,FALSDT,1.0) GROUP 22. Spot-value print-out TSTSWP=LITHYD;IPLTL=LITHYD;IYMON=NY/2+1;IXMON=NX/2;UWATCH=T GROUP 23. Field print-out and plot control IXPRL=NX-1; NXPRIN=2; NYPRIN=2; NZPRIN=5 PATCH(EXIT,CONTUR,1,NX,1,NY,NZ,NZ,1,1);COVAL(EXIT,H1,0.0,10.0) IDISPA=1;IDISPB=1;IDISPC=NZ